
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).
Chapter B18. Integral Equations

and Inverse
Theory

SUBROUTINE fred2(a,b,t,f,w,g,ak)
USE nrtype; USE nrutil, ONLY : assert_eq,unit_matrix
USE nr, ONLY : gauleg,lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(OUT) :: t,f,w
INTERFACE

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
Solves a linear Fredholm equation of the second kind by N-point Gaussian quadrature. On
input, a and b are the limits of integration. g and ak are user-supplied external functions. g
returns g(t) as a vector of length N for a vector of N arguments, while ak returns λK(t, s) as
an N×N matrix. The routine returns arrays t and f of length N containing the abscissas ti
of the Gaussian quadrature and the solution f at these abscissas. Also returned is the array
w of length N of Gaussian weights for use with the Nystrom interpolation routine fredin.

INTEGER(I4B) :: n
INTEGER(I4B), DIMENSION(size(f)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(f),size(f)) :: omk
n=assert_eq(size(f),size(t),size(w),’fred2’)
call gauleg(a,b,t,w) Replace gauleg with another routine if not

using Gauss-Legendre quadrature.call unit_matrix(omk)
omk=omk-ak(t,t)*spread(w,dim=1,ncopies=n) Form 1 − λK̃.
f=g(t)
call ludcmp(omk,indx,d) Solve linear equations.
call lubksb(omk,indx,f)
END SUBROUTINE fred2

f90
call unit_matrix(omk) The unit matrix routine in nrutil does ex-
actly what its name suggests.

1325

1326 Chapter B18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

omk=omk-ak(t,t)*spread(w,dim=1,ncopies=n) By now this idiom should be
second nature: the first column of ak gets multiplied by the first element of w,
and so on.

� � �

FUNCTION fredin(x,a,b,t,f,w,g,ak)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: x,t,f,w
REAL(SP), DIMENSION(size(x)) :: fredin
INTERFACE

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t
REAL(SP), DIMENSION(size(t)) :: g
END FUNCTION g

FUNCTION ak(t,s)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: t,s
REAL(SP), DIMENSION(size(t),size(s)) :: ak
END FUNCTION ak

END INTERFACE
Input are arrays t and w of length N containing the abscissas and weights of the N-point
Gaussian quadrature, and the solution array f of length N from fred2. The function
fredin returns the array of values of f at an array of points x using the Nystrom interpo-
lation formula. On input, a and b are the limits of integration. g and ak are user-supplied
external functions. g returns g(t) as a vector of length N for a vector of N arguments,
while ak returns λK(t, s) as an N × N matrix.

INTEGER(I4B) :: n
n=assert_eq(size(f),size(t),size(w),’fredin’)
fredin=g(x)+matmul(ak(x,t),w*f)
END FUNCTION fredin

f90
fredin=g(x)+matmul... Fortran 90 allows very concise coding here,
which also happens to be much closer to the mathematical formulation
than the loops required in Fortran 77.

� � �

SUBROUTINE voltra(t0,h,t,f,g,ak)
USE nrtype; USE nrutil, ONLY : array_copy,assert_eq,unit_matrix
USE nr, ONLY : lubksb,ludcmp
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t0,h
REAL(SP), DIMENSION(:), INTENT(OUT) :: t
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: f
INTERFACE

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
END FUNCTION g

FUNCTION ak(t,s)

Chapter B18. Integral Equations and Inverse Theory 1327

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t,s
REAL(SP), DIMENSION(:,:), POINTER :: ak
END FUNCTION ak

END INTERFACE
Solves a set of M linear Volterra equations of the second kind using the extended trapezoidal
rule. On input, t0 is the starting point of the integration. The routine takes N − 1 steps
of size h and returns the abscissas in t, a vector of length N . The solution at these points
is returned in the M × N matrix f. g is a user-supplied external function that returns a
pointer to the M -dimensional vector of functions gk(t), while ak is another user-supplied
external function that returns a pointer to the M × M matrix K(t, s).

INTEGER(I4B) :: i,j,n,ncop,nerr,m
INTEGER(I4B), DIMENSION(size(f,1)) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(size(f,1)) :: b
REAL(SP), DIMENSION(size(f,1),size(f,1)) :: a
n=assert_eq(size(f,2),size(t),’voltra: n’)
t(1)=t0 Initialize.
call array_copy(g(t(1)),f(:,1),ncop,nerr)
m=assert_eq(size(f,1),ncop,ncop+nerr,’voltra: m’)
do i=2,n Take a step h.

t(i)=t(i-1)+h
b=g(t(i))+0.5_sp*h*matmul(ak(t(i),t(1)),f(:,1)) Accumulate right-hand side

of linear equations in b.do j=2,i-1
b=b+h*matmul(ak(t(i),t(j)),f(:,j))

end do
call unit_matrix(a) Left-hand side goes in ma-

trix a.a=a-0.5_sp*h*ak(t(i),t(i))
call ludcmp(a,indx,d) Solve linear equations.
call lubksb(a,indx,b)
f(:,i)=b(:)

end do
END SUBROUTINE voltra

f90
FUNCTION g(t)...REAL(SP), DIMENSION(:), POINTER :: g The routine
voltra requires an argument that is a function returning a vector, but we
don’t know the dimension of the vector at compile time. The solution

is to make the function return a pointer to the vector. This is not the same thing
as a pointer to a function, which is not allowed in Fortran 90. When you use the
pointer in the routine, Fortran 90 figures out from the context that you want the
vector of values, so the code remains highly readable. Similarly, the argument ak
is a function returning a pointer to a matrix.

The coding of the user-supplied functions g and ak deserves some comment:
functions returning pointers to arrays are potential memory leaks if the arrays are
allocated dynamically in the functions. Here the user knows in advance the dimension
of the problem, and so there is no need to use dynamical allocation in the functions.
For example, in a two-dimensional problem, you can code g as follows:

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
REAL(SP), DIMENSION(2), TARGET, SAVE :: gg
g=>gg
g(1)=...
g(2)=...
END FUNCTION g

1328 Chapter B18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

and similarly for ak.
Suppose, however, we coded g with dynamical allocation:

FUNCTION g(t)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: t
REAL(SP), DIMENSION(:), POINTER :: g
allocate(g(2))
g(1)=...
g(2)=...
END FUNCTION g

Now g never gets deallocated; each time we call the function fresh memory gets
consumed. If you have a problem that really does require dynamical allocation
in a pointer function, you have to be sure to deallocate the pointer in the calling
routine. In voltra, for example, we would declare pointers gtemp and aktemp.
Then instead of writing simply

b=g(t(i))+...

we would write

gtemp=>g(t(i))
b=gtemp+...
deallocate(gtemp)

and similarly for each pointer function invocation.

call array_copy(g(t(1)),f(:,1),ncop,nerr) The routine would work if we re-
placed this statement with simply f(:,1)=g(t(1)). The purpose of using array copy
from nrutil is that we can check that f and g have consistent dimensions with
a call to assert eq.

� � �

FUNCTION wwghts(n,h,kermom)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), INTENT(IN) :: h
REAL(SP), DIMENSION(n) :: wwghts
INTERFACE

FUNCTION kermom(y,m)
USE nrtype
IMPLICIT NONE
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom
END FUNCTION kermom

END INTERFACE
Returns in wwghts(1:n) weights for the n-point equal-interval quadrature from 0 to (n−
1)h of a function f(x) times an arbitrary (possibly singular) weight function w(x) whose
indefinite-integral moments Fn(y) are provided by the user-supplied function kermom.

INTEGER(I4B) :: j
REAL(DP) :: hh,hi,c,a,b
REAL(DP), DIMENSION(4) :: wold,wnew,w
hh=h Double precision on internal calculations even though

the interface is in single precision.hi=1.0_dp/hh
wwghts(1:n)=0.0 Zero all the weights so we can sum into them.
wold(1:4)=kermom(0.0_dp,4) Evaluate indefinite integrals at lower end.

Chapter B18. Integral Equations and Inverse Theory 1329

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

if (n >= 4) then Use highest available order.
b=0.0 For another problem, you might change this lower

limit.do j=1,n-3
c=j-1 This is called k in equation (18.3.5).
a=b Set upper and lower limits for this step.
b=a+hh
if (j == n-3) b=(n-1)*hh Last interval: go all the way to end.
wnew(1:4)=kermom(b,4)
w(1:4)=(wnew(1:4)-wold(1:4))*geop(1.0_dp,hi,4) Equation (18.3.4).
wwghts(j:j+3)=wwghts(j:j+3)+(/& Equation (18.3.5).

((c+1.0_dp)*(c+2.0_dp)*(c+3.0_dp)*w(1)&
-(11.0_dp+c*(12.0_dp+c*3.0_dp))*w(2)&

+3.0_dp*(c+2.0_dp)*w(3)-w(4))/6.0_dp,&
(-c*(c+2.0_dp)*(c+3.0_dp)*w(1)&
+(6.0_dp+c*(10.0_dp+c*3.0_dp))*w(2)&

-(3.0_dp*c+5.0_dp)*w(3)+w(4))*0.50_dp,&
(c*(c+1.0_dp)*(c+3.0_dp)*w(1)&
-(3.0_dp+c*(8.0_dp+c*3.0_dp))*w(2)&

+(3.0_dp*c+4.0_dp)*w(3)-w(4))*0.50_dp,&
(-c*(c+1.0_dp)*(c+2.0_dp)*w(1)&
+(2.0_dp+c*(6.0_dp+c*3.0_dp))*w(2)&
-3.0_dp*(c+1.0_dp)*w(3)+w(4))/6.0_dp /)

wold(1:4)=wnew(1:4) Reset lower limits for moments.
end do

else if (n == 3) then Lower-order cases; not recommended.
wnew(1:3)=kermom(hh+hh,3)
w(1:3)= (/ wnew(1)-wold(1), hi*(wnew(2)-wold(2)),&

hi**2*(wnew(3)-wold(3)) /)
wwghts(1:3)= (/ w(1)-1.50_dp*w(2)+0.50_dp*w(3),&

2.0_dp*w(2)-w(3), 0.50_dp*(w(3)-w(2)) /)
else if (n == 2) then

wnew(1:2)=kermom(hh,2)
wwghts(2)=hi*(wnew(2)-wold(2))
wwghts(1)=wnew(1)-wold(1)-wwghts(2)

end if
END FUNCTION wwghts

� � �

MODULE kermom_info
USE nrtype
REAL(DP) :: kermom_x
END MODULE kermom_info

FUNCTION kermom(y,m)
USE nrtype
USE kermom_info
IMPLICIT NONE
REAL(DP), INTENT(IN) :: y
INTEGER(I4B), INTENT(IN) :: m
REAL(DP), DIMENSION(m) :: kermom

Returns in kermom(1:m) the first m indefinite-integral moments of one row of the singular
part of the kernel. (For this example, m is hard-wired to be 4.) The input variable y labels
the column, while kermom x (in the module kermom info) is the row.

REAL(DP) :: x,d,df,clog,x2,x3,x4
x=kermom_x We can take x as the lower limit of integration. Thus, we

return the moment integrals either purely to the left or
purely to the right of the diagonal.

if (y >= x) then
d=y-x
df=2.0_dp*sqrt(d)*d
kermom(1:4) = (/ df/3.0_dp, df*(x/3.0_dp+d/5.0_dp),&

1330 Chapter B18. Integral Equations and Inverse Theory

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

df*((x/3.0_dp + 0.4_dp*d)*x + d**2/7.0_dp),&
df*(((x/3.0_dp + 0.6_dp*d)*x + 3.0_dp*d**2/7.0_dp)*x&

+ d**3/9.0_dp) /)
else

x2=x**2
x3=x2*x
x4=x2*x2
d=x-y
clog=log(d)
kermom(1:4) = (/ d*(clog-1.0_dp),&

-0.25_dp*(3.0_dp*x+y-2.0_dp*clog*(x+y))*d,&
(-11.0_dp*x3+y*(6.0_dp*x2+y*(3.0_dp*x+2.0_dp*y))&

+6.0_dp*clog*(x3-y**3))/18.0_dp,&
(-25.0_dp*x4+y*(12.0_dp*x3+y*(6.0_dp*x2+y*&

(4.0_dp*x+3.0_dp*y)))+12.0_dp*clog*(x4-y**4))/48.0_dp /)
end if
END FUNCTION kermom

f90
MODULE kermom_info This module functions just like a common block to
share the variable kermom x with the routine quadmx.

� � �

SUBROUTINE quadmx(a)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,diagadd,outerprod
USE nr, ONLY : wwghts,kermom
USE kermom_info
IMPLICIT NONE
REAL(SP), DIMENSION(:,:), INTENT(OUT) :: a

Constructs in the N×N array a the quadrature matrix for an example Fredholm equation of
the second kind. The nonsingular part of the kernel is computed within this routine, while
the quadrature weights that integrate the singular part of the kernel are obtained via calls
to wwghts. An external routine kermom, which supplies indefinite-integral moments of the
singular part of the kernel, is passed to wwghts.

INTEGER(I4B) :: j,n
REAL(SP) :: h,x
REAL(SP), DIMENSION(size(a,1)) :: wt
n=assert_eq(size(a,1),size(a,2),’quadmx’)
h=PI/(n-1)
do j=1,n

x=(j-1)*h
kermom_x=x Put x in the module kermom info for use by kermom.
wt(:)=wwghts(n,h,kermom) Part of nonsingular kernel.
a(j,:)=wt(:) Put together all the pieces of the kernel.

end do
wt(:)=cos(arth(0,1,n)*h)
a(:,:)=a(:,:)*outerprod(wt(:),wt(:))
call diagadd(a,1.0_sp) Since equation of the second kind, there is diagonal

piece independent of h.END SUBROUTINE quadmx

f90 call diagadd... See discussion of diagadd after hqr on p. 1234.

� � �

Chapter B18. Integral Equations and Inverse Theory 1331

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
H

E
 A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books

or C
D

R
O

M
s, visit w

ebsite
http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth A
m

erica).

PROGRAM fredex
USE nrtype; USE nrutil, ONLY : arth
USE nr, ONLY : quadmx,ludcmp,lubksb
IMPLICIT NONE
INTEGER(I4B), PARAMETER :: N=40
INTEGER(I4B) :: j
INTEGER(I4B), DIMENSION(N) :: indx
REAL(SP) :: d
REAL(SP), DIMENSION(N) :: g,x
REAL(SP), DIMENSION(N,N) :: a

This sample program shows how to solve a Fredholm equation of the second kind using
the product Nystrom method and a quadrature rule especially constructed for a particular,
singular, kernel.
Parameter: N is the size of the grid.

call quadmx(a) Make the quadrature matrix; all the action is here.
call ludcmp(a,indx,d) Decompose the matrix.
x(:)=arth(0,1,n)*PI/(n-1)
g(:)=sin(x(:)) Construct the right-hand side, here sinx.
call lubksb(a,indx,g) Backsubstitute.
do j=1,n Write out the solution.

write (*,*) j,x(j),g(j)
end do
write (*,*) ’normal completion’
END PROGRAM fredex

